

PEPISCO_species v1.0

Reaction Dynamics Group, Paul Scherrer Institute, Villigen-PSI, Switzerland

This manual is meant to support you contributing spectra to the Photoelectron Photoion Spectral Compendium hosted at <u>https://pepisco.psi.ch</u>. The helper program PEPISCO_species.exe creates .json files with species and spectral information, which will be included in the database after being e-mailed to <u>pepisco@psi.ch</u>. The file, saved by clicking on (2), contains the species information together with all the spectra associated with the species. Thank you for your contribution!

(3) (6) (4) (6) (7) Species Nitrogen dichloride (7) Load (8) Spectrum, I(hv / eV Aliases Nitrogen dichloride radical Dichloroamidogen Title X ⁺ < ¹ Spectrum, I(hv / eV Mass / amu 84.9 Spect. DOI 10.1002/cphc.202100537 9.9, 0.03444 Sum formula NCI ₂ 10.1063/1.4984304 9.92, 0.07401 Number 25938-83-4 (9) Struct 9.93, 0.01182 PubChem CID DOI / comment Source Photolysis 213 nm 9.95, 0.05325 YIE / eV 9.94 10.1002/cphc.2021 No 9.93, 0.03344 YIE / eV 9.94 10.1002/cphc.2021 Source Photolysis 213 nm 9.95, 0.05325 YIE / eV 9.94 10.1002/cphc.2021 No 9.95, 0.05325 9.97, 0.09623 YIE / eV (10) Sample (NCI Si in CH2CI2, 20 wt%) flow: 14 sccm 7, K 29.99, 0.01324 9.935, 0.03324 9.935, 0.03324 9.935, 0.03324 9.935, 0.03324 9.935, 0.03324 9.90, 0.11052 9.99.99.0132 Samplet photolysis reactor. Furt	(a) Nitro	gen dichl	oride			(b) X+ 1A	1 (1/3)			
Species Nitrogen dichloride Line spectrum (Aliases Nitrogen dichloride radical Dichloronitrogen Uite spectrum (Mass / amu 84.9 Spect. DOI 10.1002/cphc.202100537 Sum formula NCI _{2 ysg. 0.03444 NCI (sub>2 ysg. 0.03839 Sum formula NCI_{2 ysg. 0.07048 Sum formula NCI_{2 ysg. 0.07041 Dubchem CID Source Photolysis 213 nm PubChem CID Source Photolysis 213 nm T / K 298 995, 0.05121 Source Photolysis 213 nm 995, 0.05335 9.94, 0.12118 Source Photolysis 213 nm 7 / K 298 995, 0.05335 Sample / INCI3 in CH2CL, 20 wt% flow: 14 sccm Ar flow to dilute sample: 20 sccm Ar flow to dilute sample: 20 sccm Sample / INCI3 in CH2CL, 20 wt% flow: 14 sccm Ar flow to dilute sample: 20 sccm 995, 0.03378 10.01, 0.27174 10.01, 0.27174 10.02, 0.41367 10.01, 0.27174 10.03, 0.47575 10.04 (%) Paste Copy(%)<}}}		-		(6)		(4)	(5)	l.	(6)) -
Aliases Nitrogen dichloride radical Dichloronitrogen Dichloroamidogen Mass / amu 84.9 Sum formula InChl CAS number 25938-83-4 (9) Struct NIC < sub>2 < /sub> DOI / comment AIE / eV 9.94 (11)	Species	Nitrogen dich	nloride	Title	X <sup< td=""><td>>+ ^{1<}</td><td>A<sub< td=""><td></td><td></td><td>-</td></sub<></td></sup<>	>+ ^{1<}	A <sub< td=""><td></td><td></td><td>-</td></sub<>			-
Dichloronitrogen Dichloronitrogen Dichloronitrogen Dichloroamidogen Spect. DOI 10.1002/cphc.202100537 9.91, 0.16822 Mass / amu 84.9 Spect. DOI 10.1002/cphc.202100537 9.92, 0.03244 Sum formula NCI< ₂ Spect. DOI 10.1003/1.4984304 9.92, 0.05121 Sum formula NCI< ₂ Spect. DOI 10.1063/1.4984304 9.93, 0.05121 Dichloronitrogen Source Photolysis 213 nm 9.95, 0.05124 Doinization energies DOI / comment Source Photolysis 213 nm 9.95, 0.05354 Disization energies DOI / comment No 9.96, 0.05355 9.97, 0.09623 Mit / eV 9.94 10.1002/cphc.2021 Ne 9.96, 0.05355 9.97, 0.09623 VIE / eV 9.94 10.1002/cphc.2021 No 9.985, 0.05324 9.995, 0.05325 Sample (NCI3 in CH2Cl2, 20 wt%) flow: 14 sccm Photolysis reactor. Further details of spectral treatment, sample / isomeric purity etc. 9.995, 0.03578 10.005, 0.1344 Sample (NCI3 in CH2Cl2, 20 wt%) flow: 14 sccm Photolysis reactor. Further details of spectral treatment, sample / isomeric purity etc. 9.995, 0.03578 10.02, 0.41367 <td>Aliases</td> <td>Nitrogen dichl</td> <td>oride radical</td> <td>Uploader</td> <td>MG</td> <td></td> <td></td> <td></td> <td></td> <td>· (13)</td>	Aliases	Nitrogen dichl	oride radical	Uploader	MG					· (13)
Dichloroamidogen 9.91, 0.16682 Mass / amu 84.9 Sum formula NCI ₂ NCI Sub 2 InChi 25938-83-4 CAS number 25938-83-4 Dichloroamidogen 9.94 InChi Source Photolysis 213 nm 9.95, 0.05121 9.94, 0.12118 9.94, 0.12118 9.94, 0.12118 9.94, 0.12118 9.94, 0.12118 9.95, 0.05124 9.95, 0.05235 9.97, 0.09623 9.94 10.1002/cphc.2021 VIE / eV 10.1002/cphc.2021 (11) Comments: mass resolution, extraction field, details of 9.99, 0.01532 9.99, 0.01052 9.99, 0.01052 9.99, 0.01052 9.99, 0.01052 9.99, 0.01052 9.99, 0.03576 10.010, 0.27174 10.0102, 0.47575 Date & facility 2020 SLS VUV (11) 0.03 (11) 0.04 (12) 0.41867 (13) 0.47575 (14) Save (2)		Dichloronitrog	en	Created	2020/1	2/12				^
Mass / amu B4.9 Sum formula NCI ₂ InChI IO.1063/1.4984304 CAS number 25938-83-4 PubChem CID Dol / comment AIE / eV 9.94 IO.1002/cphc.2021 T/K VIE / eV Dol / comment AIE / eV 9.94 IO.1002/cphc.2021 No (1) Comment: AIE / eV 9.94 IO.1002/cphc.2021 No 9.94 IO.1002/cphc.2021 (1) Comment: AIE / eV 9.94 IO.1002/cphc.2021 No 9.94 IO.1002/cphc.2021 (1) Comment: AIE / eV 9.94 IO.1002/cphc.2021 No 9.95 0.05332 9.975 0.08324 9.980 0.06881 9.995 0.03578 9.995 0.03578 9.995 0.03583 9.995 0.03583 9.995 0.0358 10.01 0.02174 10.02		Dichloroamido	ogen	Spect. DOI	10.100	2/cphc.202100537		9.91, 0.1	6682	
Mass / amu 84.9 Sum formula NCI< _{2 InChI 10.1063/1.4984304 CAS number 25938-83-4 PubChem CID Source Photolysis 213 nm 9.945, 0.12061 Source Photolysis 213 nm T / K 298 Source Photolysis 213 nm T / K 298 Source Photolysis 213 nm T / K 298 Source Photolysis 213 nm Source Photolysis 213 nm 9.94, 0.12118 9.945, 0.15124 9.95, 0.08024 9.95, 0.05121 9.94, 0.12011 9.95, 0.05121 9.95, 0.05121 9.95, 0.05121 9.94, 0.12014 Photolysis 213 nm 7/ K 298 9.94, 0.02014 Photolysis 200000000000000000000000000000000000}				Туре	ms-TP	PES	~			
Sum formula NCI ₂ InChI I0.1063/1.4994304 10.1016/j.nima.2009.08.069 9.935, 0.05121 9.935, 0.05121 9.94, 0.12118 9.94, 0.12118 9.95, 0.08504 9.95, 0.08504 9.95, 0.08504 9.95, 0.055124 9.95, 0.08504 9.95, 0.08504 9.95, 0.08504 9.95, 0.08504 9.95, 0.08524 9.97, 0.09623 9.97, 0.09623 9.97, 0.09623 9.97, 0.09623 9.97, 0.09623 9.97, 0.09623 9.98, 0.06981 9.985, 0.05332 9.99, 0.01052 9.99, 0.01052 9.99, 0.01052 9.99, 0.11052 9.99, 0.01052 9.99, 0.01052 9.99, 0.01052 9.99, 0.01052 9.99, 0.01052 9.99, 0.01052 9.99, 0.01052 9.99, 0.01052 9.99, 0.01052 9.995, 0.03578 9.01002/cphc.202100537 10.01, 0.11938 10.01, 0.02/cphc.202100537 10.02, 0.41367 10.02, 0.41367 10.02, 0.41367 10.03, 0.47575 10.02, 0.41367 10.03, 0.47575 10.02, 0.41367 10.04 (8) Paste				Further citat	ions (exp	ot., source, light sour	ce etc.)	9.925, 0.	08294	
Sum formula NCI ₂ InChI	Mass / amu	84.9		10.1063/1.4	984304					
CAS number 25938-83-4 (9) Struct PubChem CID Source Photolysis 213 nm 9.95, 0.15124 Ionization energies DOI / comment 298 9.96, 0.09275 Ionization energies DOI / comment 9.94 10.1002/cphc.2021 VIE / eV ION Source Photolysis 213 nm 9.95, 0.15124 Omments: 9.94 10.1002/cphc.2021 No 9.96, 0.09275 VIE / eV ION Source Flux normalization 9.96, 0.05332 Comments: mass resolution, extraction field, details of spectral treatment, sample / isomeric purity etc. 9.98, 0.06981 Sample (NCI3 in CH2CI2, 20 wt%) flow: 14 sccm Ar flow to dilute sample: 20 sccm 9.995, 0.03578 ION 0, 0.27174 10.015, 0.34664 10.02, 0.47367 ION 0, 0.27174 10.015, 0.34664 10.02, 0.47367 IDate & facility 2020 SLS VUV 10.015, 0.34664 ION 0, 0.6 Paste Copy (8) Save IT Load (8) Paste Copy (8) Save	Sum formula	NCI _{2<!--</td--><td>sub></td><td>10.1016/j.ni</td><td colspan="2">10.1016/j.nima.2009.08.069</td><td></td><td colspan="2"></td><td></td>}	sub>	10.1016/j.ni	10.1016/j.nima.2009.08.069					
CAS number 25938-83-4 (9) Struct PubChem CID Ionization energies DOI / comment AIE / eV 9.94 10.1002/cphc.2021 VIE / eV 100 X (1) Load Save (2) Source Photolysis 213 nm 9.955, 0.08504 9.96, 0.09275 9.97, 0.09623 9.975, 0.08324 9.98, 0.06981 9.995, 0.08324 9.98, 0.06981 9.995, 0.08324 9.98, 0.06981 9.995, 0.08324 9.998, 0.05933 9.995, 0.03578 10, 0.11938 10.015, 0.34664 10.02, 0.41367 10.02, 0.41367 10.02, 0.41367 10.02, 0.41367 10.02, 0.41367 10.02, 0.41367 10.02, 0.41367 10.02, 0.42595 10.03, 0.47575 0.04 9.99 0.04 10.01 10.02 10	InChl									
Ionization energies DOI / comment AIE / eV 9.94 10.1002/cphc.2021 VIE / eV (10) (11) (12) (13) (14) (15) (16) (17) (18)	CAS number	25938-83-4	(9) Struct	Source		Photolysis 213 nm				
Ionization energies DUT / comment AlE / eV 9.94 10.1002/cphc.2021 Ite normalization VIE / eV Ite normalization (10) Ite normalization (11) Ite normalization (12) Ite normalization	PubChem CID			T/K		298				
VIE / eV (10) (11) (Resolution /	meV	5				
(1) Comments: mass resolution, extraction field, details of spectral treatment, sample / isomeric purity etc. Sample (NCI3 in CH2CI2, 20 wt%) flow: 14 sccm Ar flow to dilute sample: 20 sccm Fuel flow: 20 sccm Side sampled photolysis reactor. Further details available in 10.1002/cphc.202100537 Date & facility 2020 SLS VUV (1) Load Save (2) (1) Load (8) Paste Copy (8) Save 10.01 10.02		9.94 10.10	02/cphc.2021	Flux normali	zation	No				
(11) (11)	VIE / eV		(10) •*	Comments:	mass res	olution, extraction fi	eld, details of			
(1) (1) (1) (1) (1) (1) (1) (1)										
(1) (1) (1) (1) (1) (1) (1) (1)	/						4 sccm			
Side sampled photolysis reactor. Further details available in 10.1002/cphc.202100537 10.015, 0.34664 10.02, 0.41367 10.025, 0.52956 10.03, 0.47575 10.02, 0.512956 10.03, 0.47575 10.02 (1) Load Save (2) (2) (7) Load (8) Paste Copy (8) (9) 0.6 10.01 0.4 10.02 0.4 10.02 0.4 10.02 0.4 10.02 0.4 10.02 0.4 10.02 0.4 10.02 0.4 10.02 0.4	((11)								
available in 10.1002/cphc.202100537 10.02, 0.41367 10.02, 0.41367 10.025, 0.52956 10.03, 0.47575 10.03, 0.47575 (1) Load Save (2) (7) Load (8) Paste (9) Save 1 0.8 1 0.6 1 0.4 1 0.4 1 0.4		(11)		2						
(1) Load Save (2) (1) Load Save (2) (1) Load (3) Paste (1) Load (3) Paste (2) (2) Copy (8) (3) Load (3) Paste (4) Load (3) Paste (5) Load (3) Paste (6) Load (3) Paste (7) Load (3) Paste (7) Load (4) Paste				available in	10.1002/	/cphc.202100537				
(1) Load Save (2) (7) Load (8) Paste Copy (8) Save (7) Load (8) Paste Copy (8) Save (7) Load (8) Paste Copy (8) Save				Date & facili	tv	2020 SLS VUV				
Definition of the second secon	(1) Load	1 [Save (2)			Dacte		Conv(8)	50.100	
0.8 0.6 0.4 0.2 0.2	(-) 2000	J [557C (-)	() Loud		- use		cop) (0)		- ().
0.8 0.6 0.4 0.2 0.2 0.2	1			71	_					(12)
	·뜯 0.8		()	14						
	2, al	/	$\langle \langle \rangle \rangle$. 7	\sim Λ	No a			
	usit usit	/	4.	$\langle \rangle$	1/	4 1 1	Arm	M		
	Ĕ 0.2	MALL AF	~~~	W		- W `		M	m	
9.9 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7					· V					

1. Creating new species, adding and removing spectra, moving spectra between species

1.1 Species panel (a)

Load (1)	Opens a species including multiple experimental spectra and simulations from a .json file
Save (2)	Saves a species including multiple experimental spectra and simulations to a .json file to be submitted to the TPES database
Bin (3)	Clears the species to start editing a new one

1.2 Spectrum panel (b)

+ button (4)	Adds a new spectrum (measurement or simulation) to the current species
- button (5)	Deletes the current spectrum from the species dataset
\leftarrow/\rightarrow buttons (6)	Step through the spectra associated with the current species
Save and Load (7)	Saves the current spectrum into a standalone .json file from which it can be loaded into, <i>e.g.</i> , the current spectrum of a different species. Helpful to move erroneously placed spectra between species, but not needed otherwise: when the species is saved, all the spectra are saved into the file, as well.
Copy and Paste (8)	The same as Save and Load but with the help of the Clipboard.

2. Adding species details, spectral metadata and data

2.1 Species panel (a)

These data are used to search for the species in the database, based on the given name(s), formula, species identifiers and ionization energies. The more data given here, the easier it will be for the species to be found.

Species	Unique, most common name of a compound/molecule, e.g., Nitrogen dichloride
Aliases	Other, commonly used English species names in physical chemistry context. Consult <u>PubChem</u> if needed
Mass	Molar mass without units, preferably to two significant figures. $(84.91 \text{ for NCl}_2)$
Sum formula	$C_z H_y O_x N_v$ – Use the subscript button (12) or Alt + y to format the entry (subscripts are only rendered in the live database)
InChI	IUPAC International Chemical Identifier, consult <u>PubChem</u> or generate using <u>ChemDraw</u> . <i>Example:</i> InChI=1S/C2H60/c1-2- 3/h3H, 2H2, 1H3 for ethanol

CAS number	CAS Registry Number, consult <u>PubChem</u> . <i>Example:</i> 64-17-5 for ethanol
PubChem CID	PubChem Compound ID, consult <u>PubChem</u> . <i>Example:</i> 702 for ethanol
Ionization energies / eV	Adiabatic (AIE) and/or vertical (VIE) ionization energies, preferably based on assigned experimental spectra, given in eV without unit. Please give DOI if literature reference is available, otherwise details to help put the values into context.
Struct button (9)	Attempts to download a molecular structure to display in the field (11). If a structure is unavailable, please delete the image by clicking on (10). By right clicking in the field (11), a custom image (preferred resolution 150×150 or slightly larger) can be pasted into the field.
2.2 Spectral information	(b)

Title	Give a title to the spectrum in the database. Do not give the name of the species but focus on how to describe the spectrum best, possibly specifying the ion states involved, as in the image above. You can use buttons (12) for sub- and superscripts or Alt + x or y (only rendered in the live database). It is best practice to specify the type of the spectrum (TPES, PIS, or ms-TPES) and give the energy range.
Uploader	This is going to be your signature below the spectrum in the database. Initials are preferred, i.e., US for Urs Schweizer
Spect. DOI	DOI (without DOI or http link), where the spectrum was published. Leave empty if unpublished. Example: 10.1021/jp501117n
Туре	Select the type of spectrum/simulation etc. from the dropdown menu
Further citations	Add DOIs of the beamline, instrument, experiment etc. Examples: 10.1063/1.3082016, 10.1016/j.nima.2009.08.069
Source	Briefly describe the source of the sample, especially important for reactive species, such as radicals.
	Examples: effusive inlet, supersonic molecular beam, pyrolysis reactor, photolysis reactor 213 nm, McKenna burner, jet stirred reactor, liquid vaporization, catalytic reactor, or fluorine discharge
T / K	Source temperature in kelvin, without unit
Resolution / meV	Combined photon energy and electron kinetic energy resolution, giving the effective energy resolution of the spectrum in meV without unit
Flux normalization	Was the spectrum normalized to the photon flux? Add yes/no or more details and/or DOI. Examples: flux from AXUV photodiode, PMT, details about response functions, or literature flux from 10.1016/j.nima.2009.08.069
Comments	Describe at bit more in detail how the reactive intermediate (e.g., radical) or stable species was measured. Example: 3-methyl benzyl bromide heated to 50 °C diluted at 70 mbar in argon (20 sccm), expansion through a 150 um pinhole and subsequent pyrolysis. Mass resolution 100, extraction field 120 V/cm

Date & Facility	Describe when and where the spectrum was obtained. Example: 2020/05 SLS/VUV
Spectrum	Insert the spectrum given in two columns with photon energies in <i>x</i> , and intensities in <i>y</i> as ASCII values. The columns can be separated by space, tab, or comma. Copy from Excel or Origin and paste the data in this field. Example: 6.995 0 7.000 0.5 7.005 1 7.010 0.5 7.015 0
Line spectrum (13)	The (x,y) values given in the spectrum will not be connected, but lines will be plotted for the transitions. Taking the previous example, the corresponding spectrum could be given as 7.005 1 Zero <i>y</i> values, if given, will be removed. Useful for Franck–Condon simulations (see below).

2.3 Including Franck–Condon simulations (b)

When adding an FC simulation (after adding a new spectrum by clicking on button (4), select FC simulation in **Type**), the meaning of certain fields change correspondingly. A few notes regarding FC simulations follow.

Title	Describe the simulation briefly, using the states, transitions and symmetries simulated. It is encouraged to save the simulation of each state separately. Example: $X^+ {}^2A_2 \leftarrow X {}^1A_1$
Further citations	Describe the tools used to obtain the simulation. Give DOI if available or name/version of the program. Examples: Gaussian 16, Revision C.01, Q-Chem 4.3, FCFit, PESCAL, eZspectrum, ezFCF
Level(s) of theory	Describe the methods/functional(s) and basis set(s) used in the <i>ab initio</i> geometry optimization and frequency calculations. Example: (EOM-IP-)CCSD/cc-pVTZ or B3LYP/6-311G(d,p)
Vib. T / K	Vibrational temperature of the simulation in K, without unit
Conv. FWHM / meV	Full width half maximum of the Gaussian function used to convolute the line spectrum in meV without unit. Note that Gaussian16 required half width half maximum (HWHM) in cm ⁻¹ . Please convert to FWHM in meV [FWHM / meV = $2 \times$ HWHM / (cm ⁻¹) / 8065 × 1000]. Leave empty in case of a line spectrum.
0–0 transition / eV	Specify where the 0–0 transition is located in the simulated spectrum in eV without units. This could be a calculated ionization energy or the measured one if the simulation is shifted to fit the experiment; without this value, the simulation is difficult to interpret.

Comments	More details, <i>e.g.</i> , Duschinsky or parallel approximation, convergence issues, large-amplitude vibrations or internal rotations, relevant calculation parameters etc. Example: including the Duschinsky rotation in the double harmonic approximation
Data & Facility	When and where was the simulation carried out? Example: 2021/05 PSI, merlin6 cluster